Counting points in a small box on varieties
نویسندگان
چکیده
منابع مشابه
Counting points on varieties over finite fields of small characteristic
We present a deterministic polynomial time algorithm for computing the zeta function of an arbitrary variety of fixed dimension over a finite field of small characteristic. One consequence of this result is an efficient method for computing the order of the group of rational points on the Jacobian of a smooth geometrically connected projective curve over a finite field of small characteristic. ...
متن کاملCounting Rational Points on Algebraic Varieties
In these lectures we will be interested in solutions to Diophantine equations F (x1, . . . , xn) = 0, where F is an absolutely irreducible polynomial with integer coefficients, and the solutions are to satisfy (x1, . . . , xn) ∈ Z. Such an equation represents a hypersurface in A, and we may prefer to talk of integer points on this hypersurface, rather than solutions to the corresponding Diophan...
متن کاملCounting Rational Points on Ruled Varieties
In this paper, we prove a general result computing the number of rational points of bounded height on a projective variety V which is covered by lines. The main technical result used to achieve this is an upper bound on the number of rational points of bounded height on a line. This upper bound is such that it can be easily controlled as the line varies, and hence is used to sum the counting fu...
متن کاملCounting Rational Points on Algebraic Varieties
For any N ≥ 2, let Z ⊂ P be a geometrically integral algebraic variety of degree d. This paper is concerned with the number NZ(B) of Q-rational points on Z which have height at most B. For any ε > 0 we establish the estimate NZ(B) = Od,ε,N (B ), provided that d ≥ 6. As indicated, the implied constant depends at most upon d, ε and N . Mathematics Subject Classification (2000): 11G35 (14G05)
متن کاملCounting rational points on ruled varieties over function fields
Let K be the function field of an algebraic curve C defined over a finite field Fq. Let V ⊂ PK be a projective variety which is a union of lines. We prove a general result computing the number of rational points of bounded height on V/K. We first compute the number of rational points on a general line defined over K, and then sum over the lines covering V . Mathematics Subject Classification: 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1988
ISSN: 0386-2194
DOI: 10.3792/pjaa.64.267